9 research outputs found

    On the limiting behavior of parameter-dependent network centrality measures

    Get PDF
    We consider a broad class of walk-based, parameterized node centrality measures for network analysis. These measures are expressed in terms of functions of the adjacency matrix and generalize various well-known centrality indices, including Katz and subgraph centrality. We show that the parameter can be "tuned" to interpolate between degree and eigenvector centrality, which appear as limiting cases. Our analysis helps explain certain correlations often observed between the rankings obtained using different centrality measures, and provides some guidance for the tuning of parameters. We also highlight the roles played by the spectral gap of the adjacency matrix and by the number of triangles in the network. Our analysis covers both undirected and directed networks, including weighted ones. A brief discussion of PageRank is also given.Comment: First 22 pages are the paper, pages 22-38 are the supplementary material

    Using Triangles to Improve Community Detection in Directed Networks

    Full text link
    In a graph, a community may be loosely defined as a group of nodes that are more closely connected to one another than to the rest of the graph. While there are a variety of metrics that can be used to specify the quality of a given community, one common theme is that flows tend to stay within communities. Hence, we expect cycles to play an important role in community detection. For undirected graphs, the importance of triangles -- an undirected 3-cycle -- has been known for a long time and can be used to improve community detection. In directed graphs, the situation is more nuanced. The smallest cycle is simply two nodes with a reciprocal connection, and using information about reciprocation has proven to improve community detection. Our new idea is based on the four types of directed triangles that contain cycles. To identify communities in directed networks, then, we propose an undirected edge-weighting scheme based on the type of the directed triangles in which edges are involved. We also propose a new metric on quality of the communities that is based on the number of 3-cycles that are split across communities. To demonstrate the impact of our new weighting, we use the standard METIS graph partitioning tool to determine communities and show experimentally that the resulting communities result in fewer 3-cycles being cut. The magnitude of the effect varies between a 10 and 50% reduction, and we also find evidence that this weighting scheme improves a task where plausible ground-truth communities are known.Comment: 10 pages, 3 figure

    An Ensemble Framework for Detecting Community Changes in Dynamic Networks

    Full text link
    Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model is different at different times. In order to represent the structural changes expressed by this dynamic model the network will be split into discrete time segments and a clustering algorithm will assign block memberships for each segment. In this paper we show that using an ensemble of clustering assignments accommodates for the variance in scalable clustering algorithms and produces superior results in terms of pairwise-precision and pairwise-recall. We also demonstrate that the dynamic clustering produced by the ensemble can be visualized as a flowchart which encapsulates the community evolution succinctly.Comment: 6 pages, under submission to HPEC Graph Challeng

    Ranking hubs and authorities using matrix functions

    Get PDF
    The notions of subgraph centrality and communicability, based on the exponential of the adjacency matrix of the underlying graph, have been effectively used in the analysis of undirected networks. In this paper we propose an extension of these measures to directed networks, and we apply them to the problem of ranking hubs and authorities. The extension is achieved by bipartization, i.e., the directed network is mapped onto a bipartite undirected network with twice as many nodes in order to obtain a network with a symmetric adjacency matrix. We explicitly determine the exponential of this adjacency matrix in terms of the adjacency matrix of the original, directed network, and we give an interpretation of centrality and communicability in this new context, leading to a technique for ranking hubs and authorities. The matrix exponential method for computing hubs and authorities is compared to the well known HITS algorithm, both on small artificial examples and on more realistic real-world networks. A few other ranking algorithms are also discussed and compared with our technique. The use of Gaussian quadrature rules for calculating hub and authority scores is discussed.Comment: 28 pages, 6 figure

    Local Rewiring Algorithms to Increase Clustering and Grow a Small World

    No full text
    Many real-world networks have high clustering among vertices: vertices that share neighbors are often also directly connected to each other. A network's clustering can be a useful indicator of its connectedness and community structure. Algorithms for generating networks with high clustering have been developed, but typically rely on adding or removing edges and nodes, sometimes from a completely empty network. Here, we introduce algorithms that create a highly clustered network by starting with an existing network and rearranging edges, without adding or removing them; these algorithms can preserve other network properties even as the clustering increases. They rely on local rewiring rules, in which a single edge changes one of its vertices in a way that is guaranteed to increase clustering. This greedy step can be applied iteratively to transform a random network into a form with much higher clustering. Additionally, the algorithms presented grow a network's clustering faster than they increase its path length, meaning that network enters a regime of comparatively high clustering and low path length: a small world. These algorithms may be a basis for how real-world networks rearrange themselves organically to achieve or maintain high clustering and small-world structure.Comment: 20 pages, 13 figure
    corecore